1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
//! rust-compression
//!
//! # Licensing
//! This Source Code is subject to the terms of the Mozilla Public License
//! version 2.0 (the "License"). You can obtain a copy of the License at
//! <http://mozilla.org/MPL/2.0/>.

use crate::action::Action;
use crate::bitio::direction::left::Left;
use crate::bitio::direction::Direction;
use crate::bitio::small_bit_vec::SmallBitVec;
use crate::bitio::writer::BitWriter;
use crate::bitset::BitArray;
use crate::bzip2::mtf::MtfPosition;
use crate::bzip2::{HEADER_h, BZ_G_SIZE, HEADER_0, HEADER_B, HEADER_Z};
use crate::core::cmp;
use crate::core::fmt;
use crate::core::hash::{BuildHasher, Hasher};
use crate::core::u8;
use crate::crc32::{BuiltinDigest, IEEE_NORMAL};
use crate::error::CompressionError;
use crate::huffman::cano_huff_table::make_tab_with_fn;
use crate::huffman::encoder::HuffmanEncoder;
use crate::suffix_array::sais::bwt;
use crate::traits::encoder::Encoder;
#[cfg(not(feature = "std"))]
use alloc::collections::vec_deque::VecDeque;
#[cfg(not(feature = "std"))]
use alloc::string::String;
#[cfg(not(feature = "std"))]
#[allow(unused_imports)]
use alloc::vec;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use log::{debug, log_enabled, Level};
#[cfg(feature = "std")]
use std::collections::vec_deque::VecDeque;

#[derive(Debug)]
pub struct BZip2Encoder {
    inner: EncoderInner,
    writer: BitWriter<Left>,
    queue: VecDeque<SmallBitVec<u32>>,

    finished: bool,
    bitbuf: u32,
    bitbuflen: usize,
    bit_finished: bool,
}

impl Default for BZip2Encoder {
    fn default() -> Self {
        Self::new(9)
    }
}

impl BZip2Encoder {
    pub fn new(level: usize) -> Self {
        if level < 1 || level > 9 {
            panic!("invalid level");
        }

        Self {
            inner: EncoderInner::new(level),
            writer: BitWriter::new(),
            queue: VecDeque::new(),
            finished: false,
            bitbuf: 0,
            bitbuflen: 0,
            bit_finished: false,
        }
    }

    fn next_bits<I: Iterator<Item = u8>>(
        &mut self,
        iter: &mut I,
        action: Action,
    ) -> Option<Result<SmallBitVec<u32>, CompressionError>> {
        while self.queue.is_empty() {
            match iter.next() {
                Some(s) => {
                    if let Err(e) = self.inner.next(s, &mut self.queue) {
                        return Some(Err(e));
                    }
                }
                None => {
                    if self.finished {
                        self.finished = false;
                        return None;
                    } else {
                        match action {
                            Action::Flush => {
                                if let Err(e) =
                                    self.inner.flush(&mut self.queue)
                                {
                                    return Some(Err(e));
                                }
                            }
                            Action::Finish => {
                                if let Err(e) =
                                    self.inner.finish(&mut self.queue)
                                {
                                    return Some(Err(e));
                                }
                            }
                            _ => {}
                        }
                        self.finished = true;
                    }
                }
            }
        }
        self.queue.pop_front().map(Ok)
    }
}
impl Encoder for BZip2Encoder {
    type Error = CompressionError;
    type In = u8;
    type Out = u8;
    fn next<I: Iterator<Item = u8>>(
        &mut self,
        iter: &mut I,
        action: Action,
    ) -> Option<Result<u8, CompressionError>> {
        while self.bitbuflen == 0 {
            let s = match self.next_bits(iter, action) {
                Some(Err(e)) => return Some(Err(e)),
                Some(Ok(ref s)) => self.writer.write_bits(s),
                None => {
                    if self.bit_finished {
                        self.bit_finished = false;
                        return None;
                    } else {
                        match action {
                            Action::Finish | Action::Flush => {
                                self.bit_finished = true;
                                match self.writer.flush::<u32>() {
                                    Some((x, y)) if y != 0 => (x, y),
                                    _ => return None,
                                }
                            }
                            _ => {
                                return None;
                            }
                        }
                    }
                }
            };
            self.bitbuf = s.0;
            self.bitbuflen = s.1;
        }

        let ret = Left::convert(self.bitbuf, 32, 8) as u8;

        self.bitbuf = Left::forward(self.bitbuf, 8);
        self.bitbuflen -= 1;
        Some(Ok(ret))
    }
}

#[derive(Debug)]
struct EncoderInner {
    block_buf: Vec<u8>,
    finished: bool,
    block_size_100k: usize,
    block_max_len: usize,
    combined_crc: u32,
    block_no: usize,
    block_crc: BuiltinDigest,
    rle_buffer: u8,
    rle_count: usize,
    in_use: BitArray,
    mtf_buffer: Vec<u16>,
    num_z: u64,
}

impl EncoderInner {
    fn prepare_new_block(&mut self) {
        self.block_no += 1;
        self.block_crc = IEEE_NORMAL.build_hasher();
        self.block_buf.clear();
        self.in_use.set_all(false);
    }

    pub(crate) fn new(level: usize) -> Self {
        let block_max_len = level * 100_000 - 19;
        Self {
            block_buf: Vec::with_capacity(level * 100_000),
            finished: false,
            block_size_100k: level,
            block_max_len,
            block_crc: IEEE_NORMAL.build_hasher(),
            rle_buffer: 0,
            rle_count: 0,
            block_no: 1,
            combined_crc: 0,
            in_use: BitArray::new(256),
            mtf_buffer: vec![0_u16; level * 100_000 + 1], // EOBの分増やす
            num_z: 0,
        }
    }

    fn write(
        &mut self,
        queue: &mut VecDeque<SmallBitVec<u32>>,
        val: SmallBitVec<u32>,
    ) {
        self.num_z += val.len() as u64;
        queue.push_back(val);
    }

    fn write_u8(&mut self, queue: &mut VecDeque<SmallBitVec<u32>>, val: u8) {
        self.write(queue, SmallBitVec::new(u32::from(val), 8));
    }

    fn write_u16(&mut self, queue: &mut VecDeque<SmallBitVec<u32>>, val: u16) {
        self.write(queue, SmallBitVec::new(u32::from(val), 16));
    }

    fn write_u32(&mut self, queue: &mut VecDeque<SmallBitVec<u32>>, val: u32) {
        self.write(queue, SmallBitVec::new(val, 32));
    }

    fn write_block(
        &mut self,
        is_final: bool,
        queue: &mut VecDeque<SmallBitVec<u32>>,
    ) -> Result<(), CompressionError> {
        if is_final {
            self.write_rle();
            self.rle_count = 0;
        }

        let nblock = self.block_buf.len();
        let block_crc = self.block_crc.finish() as u32;

        self.combined_crc =
            ((self.combined_crc << 1) | (self.combined_crc >> 31)) ^ block_crc;

        debug!(
            "    block {}: crc = 0x{:08X}, combined CRC = 0x{:08X}, size = {}",
            self.block_no, block_crc, self.combined_crc, nblock
        );

        if self.block_no == 1 {
            self.write_u8(queue, HEADER_B);
            self.write_u8(queue, HEADER_Z);
            self.write_u8(queue, HEADER_h);
            let bs100k = self.block_size_100k as u8;
            self.write_u8(queue, HEADER_0 + bs100k);
        }

        if nblock > 0 {
            self.write_u8(queue, 0x31);
            self.write_u8(queue, 0x41);
            self.write_u8(queue, 0x59);
            self.write_u8(queue, 0x26);
            self.write_u8(queue, 0x53);
            self.write_u8(queue, 0x59);

            /*-- Now the block's CRC, so it is in a known place. --*/
            self.write_u32(queue, block_crc);

            /*--
                Now a single bit indicating (non-)randomisation.
                As of version 0.9.5, we use a better sorting algorithm
                which makes randomisation unnecessary.  So always set
                the randomised bit to 'no'.  Of course, the decoder
                still needs to be able to handle randomised blocks
                so as to maintain backwards compatibility with
                older versions of bzip2.
            --*/
            self.write(queue, SmallBitVec::new(0, 1));

            self.write_blockdata(queue)?;
            self.prepare_new_block();
        }
        /*-- If this is the last block, add the stream trailer. --*/
        if is_final {
            self.write_u8(queue, 0x17);
            self.write_u8(queue, 0x72);
            self.write_u8(queue, 0x45);
            self.write_u8(queue, 0x38);
            self.write_u8(queue, 0x50);
            self.write_u8(queue, 0x90);
            let comcrc = self.combined_crc;
            self.write_u32(queue, comcrc);
            debug!("    final combined CRC = 0x{:08X}   ", self.combined_crc);
        }
        Ok(())
    }

    // const BZ_N_GROUPS: usize = 6;
    const BZ_N_ITERS: usize = 4;
    const BZ_MAX_SELECTORS: usize = (2 + (900_000 / BZ_G_SIZE));

    const BZ_LESSER_ICOST: u8 = 0;
    const BZ_GREATER_ICOST: u8 = 15;

    fn write_blockdata(
        &mut self,
        queue: &mut VecDeque<SmallBitVec<u32>>,
    ) -> Result<(), CompressionError> {
        let mut in_use_count = 0;
        let mut unseq2seq = [0_u8; 256];

        for (d, _) in unseq2seq
            .iter_mut()
            .zip(self.in_use.iter())
            .filter(|&(_, u)| u)
        {
            *d = in_use_count as u8;
            in_use_count += 1;
        }

        let eob = in_use_count + 1;

        let mut mtf_table = MtfPosition::new(in_use_count);

        let mut zero_count = 0;
        let mut mtf_freq = vec![0; in_use_count + 2];
        let mut mtf_count = 0;

        for (i, &s) in bwt(&self.block_buf, usize::from(u8::max_value()))
            .iter()
            .enumerate()
        {
            debug_assert!(mtf_count <= i, "generateMTFValues(1)");

            /* MTF */
            let c = {
                let j = if s == 0 {
                    self.write(queue, SmallBitVec::new(i as u32, 24));
                    self.block_buf.len()
                } else {
                    s
                } - 1;
                let val = usize::from(unseq2seq[self.block_buf[j] as usize]);
                debug_assert!(val < in_use_count, "generateMTFValues(2a)");
                mtf_table.pop(val) as u16 + 1
            };

            /* ZLE */
            if c == 1 {
                zero_count += 1;
            } else {
                self.zle_write(zero_count, &mut mtf_freq, &mut mtf_count);
                zero_count = 0;
                self.mtf_buffer[mtf_count] = c;
                mtf_count += 1;
                mtf_freq[c as usize] += 1;
            }
        }

        self.zle_write(zero_count, &mut mtf_freq, &mut mtf_count);
        self.mtf_buffer[mtf_count] = eob as u16;
        mtf_count += 1;
        mtf_freq[eob] += 1;

        debug!(
            "      {} in block, {} after MTF & 1-2 coding, {}+2 syms in use",
            self.block_buf.len(),
            mtf_count,
            in_use_count
        );

        let alpha_size = in_use_count + 2;

        /*--- Decide how many coding tables to use ---*/
        let group_num = match mtf_count {
            c if c < 200 => 2,
            c if c < 600 => 3,
            c if c < 1200 => 4,
            c if c < 2400 => 5,
            _ => 6,
        };

        /*--- Generate an initial set of coding tables ---*/
        let mut len = (0..group_num)
            .rev()
            .map(|x| x + 1)
            .scan((mtf_count as u32, 0_isize), |prev, n_part| {
                let t_freq = prev.0 / n_part as u32;
                let mut ge = prev.1 - 1;
                let mut a_freq = 0;

                while a_freq < t_freq && ge < alpha_size as isize - 1 {
                    ge += 1;
                    a_freq += mtf_freq[ge as usize];
                }

                if ge > prev.1
                    && n_part != group_num
                    && n_part != 1
                    && (((group_num - n_part) & 1) == 1)
                {
                    a_freq -= mtf_freq[ge as usize];
                    ge -= 1;
                }

                debug!(
                    "      initial group {}, [{} .. {}], has {} syms ({:4.1}%)",
                    n_part,
                    prev.1,
                    ge,
                    a_freq,
                    (100.0 * f64::from(a_freq)) / (mtf_count as f64)
                );

                let gs = prev.1;

                *prev = (prev.0 - a_freq, ge + 1);

                Some(
                    (0..alpha_size as isize)
                        .map(|i| {
                            if i >= gs && i <= ge {
                                Self::BZ_LESSER_ICOST
                            } else {
                                Self::BZ_GREATER_ICOST
                            }
                        })
                        .collect::<Vec<_>>(),
                )
            })
            .collect::<Vec<_>>();

        let mut n_selectors = 0;
        let mut selector = [0; Self::BZ_MAX_SELECTORS];
        /*---
            Iterate up to BZ_N_ITERS times to improve the tables.
        ---*/
        for iter in 0..Self::BZ_N_ITERS {
            let mut rfreq = vec![vec![0; alpha_size]; group_num];
            let mut fave = vec![0; group_num];

            n_selectors = 0;
            let mut totc: u32 = 0;
            let mut gs = 0;
            while gs < mtf_count {
                /*--- Set group start & end marks. --*/
                let ge = cmp::min(gs + BZ_G_SIZE, mtf_count);

                /*--
                    Calculate the cost of this group as coded
                    by each of the coding tables.
                --*/
                /*--
                   Find the coding table which is best for this group,
                   and record its identity in the selector table.
                --*/
                let (bt, bc) = len
                    .iter()
                    .rev()
                    .map(|li| {
                        self.mtf_buffer[gs..ge]
                            .iter()
                            .map(|&x| {
                                u16::from(*unsafe {
                                    li.get_unchecked(x as usize)
                                })
                            })
                            .sum::<u16>()
                    })
                    .enumerate()
                    .min_by(|x, y| x.1.cmp(&y.1))
                    .unwrap();

                totc += u32::from(bc);
                fave[bt] += 1;
                selector[n_selectors] = bt;
                n_selectors += 1;

                /*--
                  Increment the symbol frequencies for the selected table.
                --*/
                for &i in &self.mtf_buffer[gs..ge] {
                    rfreq[bt][i as usize] += 1;
                }
                gs = ge;
            }

            if log_enabled!(Level::Debug) {
                let mut debug_str = String::new();

                let _ = fmt::write(
                    &mut debug_str,
                    format_args!(
                        "      pass {}: size is {}, grp uses are",
                        iter + 1,
                        totc / 8
                    ),
                );
                for f in fave {
                    let _ = fmt::write(&mut debug_str, format_args!(" {}", f));
                }
                debug!("{}", debug_str);
            }
            /*--
              Recompute the tables based on the accumulated frequencies.
            --*/
            /* maxLen was changed from 20 to 17 in bzip2-1.0.3.  See
            comment in huffman.c for details. */
            len = rfreq
                .iter()
                .rev()
                .map(|r| Self::create_huffman(r, 17))
                .collect::<Vec<_>>();
        }

        /*--- Compute MTF values for the selectors. ---*/
        let mut selector_mtf_tab = MtfPosition::new(group_num);
        let selector_mtf = selector
            .iter()
            .take(n_selectors)
            .map(|&x| selector_mtf_tab.pop(x))
            .collect::<Vec<_>>();

        /*--- Assign actual codes for the tables. --*/
        let code = len
            .iter()
            .rev()
            .map(|j| HuffmanEncoder::<Left, u32>::new(j))
            .collect::<Vec<_>>();

        let mut debug_str = String::new();
        /*--- Transmit the mapping table. ---*/
        {
            let in_use16 =
                self.in_use.u16_iter().map(|x| x != 0).collect::<BitArray>();

            let n_bits = self.num_z;
            self.write_u16(
                queue,
                in_use16
                    .iter()
                    .fold(0, |x, y| (x << 1) + if y { 1 } else { 0 }),
            );

            for i in in_use16.iter().enumerate().filter_map(|(i, x)| {
                if x {
                    Some(i << 4)
                } else {
                    None
                }
            }) {
                for j in (0..16).map(|x| x + i) {
                    let bv = SmallBitVec::new(
                        if self.in_use.get(j) { 1 } else { 0 },
                        1,
                    );
                    self.write(queue, bv)
                }
            }

            if log_enabled!(Level::Debug) {
                let _ = fmt::write(
                    &mut debug_str,
                    format_args!(
                        "      bits: mapping {}, ",
                        self.num_z - n_bits
                    ),
                );
            }
        }

        /*--- Now the selectors. ---*/
        let n_bits = self.num_z;
        self.write(queue, SmallBitVec::new(group_num as u32, 3));
        self.write(queue, SmallBitVec::new(n_selectors as u32, 15));

        for s in selector_mtf {
            self.write(queue, SmallBitVec::new((1 << (s + 1)) - 2, s + 1));
        }

        if log_enabled!(Level::Debug) {
            let _ = fmt::write(
                &mut debug_str,
                format_args!("selectors {}, ", self.num_z - n_bits),
            );
        }

        /*--- Now the coding tables. ---*/
        let n_bits = self.num_z;
        for l in len.iter().rev() {
            let mut curr = l[0];
            self.write(queue, SmallBitVec::new(u32::from(curr), 5));
            for &li in l {
                while curr < li {
                    /* 10 */
                    self.write(queue, SmallBitVec::new(2, 2));
                    curr += 1;
                }
                while curr > li {
                    /* 11 */
                    self.write(queue, SmallBitVec::new(3, 2));
                    curr -= 1;
                }
                self.write(queue, SmallBitVec::new(0, 1));
            }
        }
        if log_enabled!(Level::Debug) {
            let _ = fmt::write(
                &mut debug_str,
                format_args!("code lengths {}, ", self.num_z - n_bits),
            );
        }

        /*--- And finally, the block data proper ---*/
        let n_bits = self.num_z;
        {
            let mut sel_ctr = 0;
            let mut gs = 0;
            while gs < mtf_count {
                let ge = cmp::min(gs + BZ_G_SIZE, mtf_count);
                let encoder = &code[selector[sel_ctr]];
                for i in gs..ge {
                    let b = self.mtf_buffer[i];
                    self.write(
                        queue,
                        encoder
                            .enc(b)
                            .map_err(|_| CompressionError::Unexpected)?,
                    );
                }
                gs = ge;
                sel_ctr += 1;
            }
        }
        if log_enabled!(Level::Debug) {
            let _ = fmt::write(
                &mut debug_str,
                format_args!("codes {}, ", self.num_z - n_bits),
            );
            debug!("{}", debug_str);
        }

        Ok(())
    }

    fn create_huffman(freq: &[usize], lim: usize) -> Vec<u8> {
        let weight = freq
            .iter()
            .map(|&x| cmp::max(1, x) << 8)
            .collect::<Vec<_>>();

        make_tab_with_fn(&weight, lim, |x, y| {
            ((x & 0xFFFF_FF00) + (y & 0xFFFF_FF00))
                | (1 + cmp::max(x & 0xFF, y & 0xFF))
        })
    }

    fn zle_write(
        &mut self,
        mut zero_count: usize,
        mtf_freq: &mut [u32],
        mtf_count: &mut usize,
    ) {
        if zero_count != 0 {
            zero_count += 1;
            while zero_count > 1 {
                let run = zero_count as u16 & 1;
                self.mtf_buffer[*mtf_count] = run;
                *mtf_count += 1;
                mtf_freq[run as usize] += 1;
                zero_count >>= 1;
            }
        }
    }

    fn next(
        &mut self,
        buf: u8,
        queue: &mut VecDeque<SmallBitVec<u32>>,
    ) -> Result<(), CompressionError> {
        if self.rle_count == 0 {
            self.rle_buffer = buf;
            self.rle_count = 1;
            return Ok(());
        }

        if self.rle_buffer == buf && self.rle_count < 255 {
            self.rle_count += 1;
            return Ok(());
        }

        self.write_rle();

        self.rle_count = 1;
        self.rle_buffer = buf;

        if self.block_buf.len() >= self.block_max_len {
            self.write_block(false, queue)
        } else {
            Ok(())
        }
    }

    fn write_rle(&mut self) {
        // RLE output
        (0..self.rle_count)
            .for_each(|_| self.block_crc.write_u8(self.rle_buffer));

        let ret_count = cmp::min(self.rle_count, 4);
        for _ in 0..ret_count {
            let v = self.rle_buffer;
            self.in_use.set(usize::from(v), true);
            self.block_buf.push(v);
        }

        if ret_count == 4 {
            let v = (self.rle_count - 4) as u8;
            self.in_use.set(usize::from(v), true);
            self.block_buf.push(v);
        }
    }

    fn flush(
        &mut self,
        queue: &mut VecDeque<SmallBitVec<u32>>,
    ) -> Result<(), CompressionError> {
        if !self.finished {
            self.write_block(false, queue)
        } else {
            Ok(())
        }
    }

    fn finish(
        &mut self,
        queue: &mut VecDeque<SmallBitVec<u32>>,
    ) -> Result<(), CompressionError> {
        if !self.finished {
            self.finished = true;
            self.write_block(true, queue)
        } else {
            Ok(())
        }
    }
}

#[cfg(test)]
mod tests {}